The role of detailed chemical kinetics on CFD diesel spray ignition and combustion modelling

نویسندگان

  • R. Novella
  • A. García
  • José Manuel Pastor
  • V. Domenech
چکیده

Spray ignition and flame stabilisation in the frame of diesel-like combustion conditions combine fundamental and complex physical and chemical processes. In this work, a numerical investigation has been performed to evaluate the potential of integrating detailed chemistry into CFD calculations, in order to improve predictions and gain more insight in involved processes. This work has been carried out using the capabilities of OpenFOAMcode, which provides an opensource framework for 3D-CFD simulations, including an ODE solver for solving chemical kinetics. As a general methodology, this study is based on simulating free n-heptane sprays injected into a constant volume vessel, corresponding to the conditions of the experimental database provided by Sandia National Laboratories. Calculations results have been compared to experiments, evaluating the effect of a wide range of ambient conditions on spray ignition and combustion characteristics. Specifically, this research checks the performance of some relevant nheptane oxidationmechanisms found in the literature, with different degree of complexity, for modelling the chemical history of the fuel. The results of this investigation show the relative influence of chemical mechanism on spray/flame structure in terms of ignition delay and also ignition and flame stabilisation sites. The comprehensive mechanism performs generally better than more simplified chemistry models. However, its accuracy is also compromised for modelling advanced diesel-like combustion concepts based on injecting the spray into a low oxygen concentration environment. © 2010 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Study of Reactivity Controlled Compression Ignition (RCCI) Combustion in a Heavy-Duty Diesel Engine Using 3D-CFD Coupled with Chemical Kinetics

In this paper, a numerical study is performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode in a heavy-duty, single-cylinder diesel engine with gasoline and diesel fuels. In RCCI strategy in-cylinder fuel blending is used to develop fuel reactivity gradients in the combustion chamber that result in a ...

متن کامل

Investigation of the Ignition and Combustion Processes of a Dual Fuel Spray under Diesel-like Conditions using CFD Modeling

Recent research activities in the field of Diesel engines have shown the potential to reduce pollutant emissions and improve thermal efficiency by controlling fuel reactivity. However, understanding the impact of blending fuels with different physical and especially chemical properties on diesel-like spray mixing and combustion processes is still a challenge. Since the experimental techniques a...

متن کامل

Combustion Modeling for Modern Direct Injection Diesel Engines

In order to comply with stringent pollutant emissions regulations, a detailed analysis of the engine combustion and emission is required. In this field, computational tools like CFD and engine cycle simulation play a fundamental role. Therefore, the goal of the present work is to simulate a high speed DI diesel engine and study the combustion and major diesel engine emissions with more deta...

متن کامل

Toward an Improvement of Natural Gas-diesel Dual Fuel Engine Operation at Part Load Condition by Detail CFD Simulation

Natural gas-diesel dual fuel combustion is a beneficial strategy for achieving high efficient and low emissions operation in compression ignition engines, especially in genset application heavy duty diesel engine at rated power. This study aims to investigate a dual fuel engine performance and emissions using premixed natural gas and early direct injection of diesel fuel. Due to the different r...

متن کامل

Cfd Modelling and Validation of Combustion in Direct Injection Compression Ignition Engine Fuelled with Jatropha Oil Blends with Diesel

This paper presents a pre-mixed combustion model for diesel and Jatropha oil blends combustion studies. Jatropha oil blends are considered as a mixture of diesel and Jatropha oil. CFD package, FLUENT 6.3 is used for modeling the complex combustion phenomenon in compression ignition engine. The experiments are carried out on a single cylinder, four strokes, water cooled direct injection compress...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mathematical and Computer Modelling

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2011